
 الفصل التاسع…. البصريات –    المرحلة الثانية ………………..قسم الفيزياء - كلية التربية للعلوم الصرفة       

Figure 17A Fraunhofer diffraction patterns for gratings containing different numbers 
of slits.

Figure 17B Principal and secondary maxima from a  grating of three slits.

Intensity Distribution From an Ideal Grating
The procedure used for the single and double slits could be used here, 

performing the integration over the clear aperture of the slits, but it becomes 
cumbersome. Instead let us apply the more powerful method of adding the complex 
amplitudes. The situation is simpler than in the case of multiple reflections, because 
for the grating the amplitudes contributed by the individual slits are all of equal 
magnitude. We designate this magnitude by a and the number of slits by N. The phase 
will change by equal amounts δ from one slit to the next; so the resultant complex 
amplitude is the sum of the series
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To find the intensity, this expression must be multiplied by its complex conjugate

Using the trigonometric relation 1 - cos α = 2 sin2 (α /2), we may then write

where, as in the double slit, γ=δ/2 = (π /λ)d sin θ. Now the factor a2 represents the 
intensity diffracted by a single slit, and after inserting its value from Eq. (15d) we 
finally obtain for the intensity in the Fraunhofer pattern of an ideal grating

Upon substitution of N = 2 in this formula, it readily reduces to Eq. (16c) for the 
double slit.

PRINCIPAL MAXIMA
The new factor (sin2 Nγ)/(sin2γ) may be said to represent the interference term for N 
slits. It possesses maximum values equal to N2 for γ = 0, π , 2 π , ... , Although the 
quotient becomes indeterminate at these values, this result can be obtained by noting 
that

These maxima correspond in position to those of the double slit, since for the above 
values of γ 
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They are more intense, however, in the ratio of the square of the number of slits. The 
relative intensities of the different orders m are in all cases governed by the single slit 
diffraction envelope (sin2 β)/β2 , Hence the relation between β and γ in terms of slit 
width and slit separation [Eq. (l6d)] remains unchanged, as does the condition for 
missing orders [Eq. (16h)].

Minima and Secondary Maxima
To find the minima of the function (sin2 Nγ)/(sin2γ), we note that the numerator 
becomes zero more often than the denominator, and this occurs at the values N γ  = 0, ,
π , 2 π , ...  or, in general, p π . In the special cases when p = 0, N, 2N, ... , γ will be 0, 
0, , π , 2 π... ; so for these values the denominator will also vanish, and we have the 
principal maxima described above. The other values of p give zero intensity, since for 
these the denominator does not vanish at the same time. Hence the condition for a 
minimum is γ = p π / N, excluding those values of p for which p = mN, m being the 
order. These values of γ correspond to path differences

omitting the values 0, Nλ/N, 2Nλ/N, ... , for which d sin θ) = mλ and which according 
to Eq. (l7d) represent principal maxima. Between two adjacent principal maxima there
will hence be      N - 1 points of zero intensity. The two minima on either side of a 
principal maximum are separated by twice the distance of the others.
Between the other minima the intensity rises again, but the secondary maxima thus 
produced are of much smaller intensity than the principal maxima. Figure 17C shows 
a plot for six slits of the quantities sin2 Nγ and sin2γ, and also of their quotient, which 
gives the intensity distribution in the interference pattern. The intensity of the 
principal maxima is N2 or 36, so that the lower figure is drawn to a smaller scale. The 
intensities of the secondary maxima are also shown. These secondary maxima are not 
of equal intensity but fall off as we go out on either side of each principal maximum. 
Nor are they in general equally spaced, the lack of equality being due to the fact that 
the maxima are not quite symmetrical. This lack of symmetry is greatest for the 
secondary maxima immediately adjacent to the principal maxima, and is such that the 
secondary maxima are slightly shifted toward the adjacent principal maximum.

33



 الفصل التاسع…. البصريات –    المرحلة الثانية ………………..قسم الفيزياء - كلية التربية للعلوم الصرفة       

Figure 17C Fraunhofer diffraction by a grating of six very narrow slits and details of 
the intensity pattern.

These features of the secondary maxima show a strong resemblance to those of the 
secondary maxima in the single-slit pattern. Comparison of the central part of the 
intensity pattern in Fig. 17C(d) with Fig. 150 for the single slit will emphasize this 
resemblance. As. the number of slits is increased, the number of secondary maxima is 
also increased, since it is equal to N - 2. At the same time the resemblance of any 
principal maximum and its adjacent secondary maxima to the single-slit pattern 
increases. In Fig. 170 is shown the interference curve for          N = 20, corresponding 
to the last photograph shown in Fig.17A. In this case there are 18secondary maxima 
between each pair of principal maxima, but only those fairly close to the principal 
maxima appear with appreciable intensity, and even these are not sufficiently strong to
show in the photograph. The agreement with the single-slit pattern is here practically 
complete.

Figure 17D Intensity pattern for 20 narrow slits.
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Resolving Power of the Diffraction Grating

The diffraction grating is useful for measuring wavelengths accurately. Like the prism,
the diffraction grating can be used to separate white light into its wavelength 
components. Of the two devices, a grating with very small slit separation is more 
precise if one wants to distinguish two closely spaced wavelengths.
For two nearly equal wavelengths 1 and 2 between which a diffraction grating can
just barely distinguish, the resolving power R of the grating is defined as

Resolving power

where = (1 + 2)/2 and   = 2 - 1. Thus, a grating that has a high 
resolving
power can distinguish small differences in wavelength. If N  slits of the grating
are illuminated, it can be shown that the resolving power in the mth-order
diffraction is

Resolving power of a grating
Thus, resolving power increases with increasing order number and with increasing
number of illuminated slits.
Note that R = 0 for m =0; this signifies that all wavelengths are indistinguishable for
the zeroth-order maximum. However, consider the second-order diffraction pattern
(m = 2) of a grating that has 5 000 rulings illuminated by the light source. The 
resolving power of such a grating in second order is R =5 000 x 2 = 10 000. Therefore,
for a mean wavelength of, for example, 600 nm, the minimum wavelength separation 
between  two spectral lines that can be just resolved is  = /R = 6 x 10-2 nm. For 
the thir dorder principal maximum, R = 15 000 and  = 4 x 10-2 nm, and so on.

Example : Resolving Sodium Spectral Lines
When a gaseous element is raised to a very high temperature, the atoms emit radiation 
having discrete wavelengths. The set of wavelengths for a given element is called its 
atomic spectrum . Two strong components in the atomic spectrum of sodium have 
wavelengths of 589 nm and 589.59 nm.

(A) What resolving power must a grating have if these wavelengths are to be 
distinguished?

Solution Using Equation 38.11,
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